

Improving the Weldability of PBF-LB Manufactured AlSi10Mg Components by Solid-State Welding Process

R. Nunes, K. Faes, F. Probst, T. Schweikert, J. De Freese, W. De Waele, A. Simar, M. Lezaack

Institute of Mechanics, Materials and Civil Engineering (iMMC)

Selection of Additive Manufacturing Process

TIME UNTIL INDUSTRIAL USE More than 5 years 2 to 5 years Less than 2 years Index reached 5 Widespread LB-PBF industrial use 4 Industrial use Powder Laser Deposition EB-PBF Filament FDM Wire Electric/Plasma Arc Deposition 3 Wire Electron Deposition Binder Jetting Coldspray First applications Wire Laser Deposition Pellet FDM Friction Deposition 2 Ultrasonic Welding Resistance Welding Prototype system Nano Particle Jetting Powder Metallurgy Jetting Liquid Metal Printing Metal Lithography Jetting Mold Slurry Deposition Metal SLS 1 Proof of concept 0 1 2 3 4 5 TECHNOLOGY MATURITY INDEX

UCLouvain

Civil Engineering (iMMC)

AMPOWER (https://ampower.eu/)

Joining your future.

AJP Conference 2023 - Braga, Portugal

Selection of Additive Manufacturing Process

Current Status of the Art | Weldability of AMed Al Alloy Parts

Only 39 published articles : in peer-reviewed journals, congresses, conferences, and technical magazines

- 19 articles (49 %) evaluating <u>fusion welding processes</u>
 - 18 articles evaluating PBF-LB parts and 1 article evaluating DED-Arc (DED-Arc) parts
 - ➡ 14 articles evaluating LBW
 - 4 article evaluating EBW
 - 3 articles evaluating GTAW

- 19 articles (49 %) evaluating <u>solid-state welding</u> processes
 - 11 articles evaluating PBF-PB parts
 - 9 articles evaluating FSW process
 - 1 article evaluating RFW process
 - 1 article evaluating RFSSW process

1 article (2 %) evaluating fusion & solid-state welding processes

1 article evaluating GTAW and FSW welding processes

Evolution of Number of Publication on Welding of AMed Al Alloys per Year

Joining your future.

AJP Conference 2023 - Braga, Portugal

Current Status of the Art | Weldability of AMed Al Alloy Parts

Unlikely the porosity can be entirely avoided by optimization of welding parameters, Other fusion welding processes are likely to suffer from porosity issues.

Main theory:

High porosity level in PBF-LB joints are formed due to the hydrogen porosity in the PBF-LB base material.

Higher surface area to volume ratio compared to wire filler material,

Common to recycle powder in PBF-LB process.

UCLouvain

Civil Engineering (iMMC)

nstitute of Mechanics. Materials and

Joining your future.

05/20

AJP Conference 2023 - Braga, Portugal

Current Status of the Art | PBF-LB AlSi10Mg Powder Recycling

Particle Morphology, Porosity and Surface Oxidation

Morphology and surface oxidation condition of new and recycled AlSi10Mg powder

Correlation between porosity in final parts and oxygen content, depending on powder condition

- R0 recycling condition where virgin powder was processed once
- Aged 96 powder condition after aging (400°C) the powder during 96 h
- R0 aged 96 h recycling condition where virgin powder was processed once and aged (400°C)during 96 h

Fedina, T. *et al.* Influence of AlSi10Mg Powder Aging on the Material Degradation and its Processing in Laser Powder Fusion. Powder Technology 412 (2022) <u>https://doi.org/10.1016/j.powtec.2022.118024</u>

AJP Conference 2023 - Braga, Portugal

Current Status of the Art | PBF-LB AlSi10Mg Powder Recycling

Laser beam absorbance by new and recycled AlSi10Mg powder as a function of wavelength

Powder state	Average laser light absorbance [%]
Virgin	68.55 (±0.10)
R0	68.48 (±0.09)
Aged 96 h	58.23 (±0.13)
R0 aged 96 h	58.13 (±0.09)

Average laser beam absorbance by new and recycled AlSi10Mg powder

Average laser beam absorbance by new and recycled AlSi10Mq powder as function of measured oxygen content

- R0 recycling condition where virgin powder was processed once
- Aged 96 powder condition after aging (400°C) the powder during 96 h ٠
- R0 aged 96 h recycling condition where virgin powder was processed once and ٠ aged (400°C)during 96 h

Fedina, T. et al. Influence of AlSi10Mg Powder Aging on the Material Degradation and its Processing in Laser Powder Fusion. Powder Technology 412 (2022) https://doi.org/10.1016/j.powtec.2022.118024

AJP Conference 2023 - Braga, Portugal

20/10/2023

07/20

Joining your future.

Porosity on Welding of PBF-LB Al Alloy Parts | Pore Belt Region

Joining your future.

08/20

AJP Conference 2023 - Braga, Portugal

20/10/2023

(b) Laser and Electron Beam Welding Processes without Filler Metal Feeding

Porosity on Welding of PBF-LB Al Alloy Parts | Pore Belt Region

Pore Belt Region in the arc weld between conventionally and additively (PBF-LB) Al alloy parts: Optimal case: Laser Cleaning prior to welding

AJP Conference 2023 - Braga, Portugal

20/10/2023

UCLouvain Institute of Mechanics, Materials and Civil Engineering (iMMC) UNIVERS

Literature Review | Literature Gap and Research Objective

- High importance to create hybrid structures made by additive and conventional manufacturing
- BUT : Lack of literature evaluating the weldability of AM aluminium parts
- Existing articles focus on :
 - Feasibility of using specific welding processes, without comparing them,
 - Different AM processes.

Weldability of DED-Arc vs PBF-LB Al parts

Base Materials

CONV 5083 Longitudinal

CONV 5083 Transversal

CONV UTS: 310.6 MPa

PBF-LB AlSi10Mg PBD

PBF-LB AlSi10Mg PDD

PBF-LB UTS: 435.6 MPa

DED-Arc 5183 PBD

DED-Arc 5183 PDD

DED-Arc UTS: 288.4 MPa

Joining your future.

AJP Conference 2023 - Braga, Portugal

- Flattening of the typical fish-scale PBF-LB structure •
- No internal discontinuities found ٠

Joining your future.

20/10/2023

UCLouvain

Civil Engineering (iMMC)

Friction Welding of PBF-LB Al Alloy Parts

Weldability

Friction welding between conventionally and PBF-LB manufactured Al alloy tubes

GMAW welding between conventionally and PBF-LB manufactured Al alloy sheets

Joining your future.

AJP Conference 2023 - Braga, Portugal

Friction Welding of PBF-LB Al Alloy Parts

distance from the weld center in mm

AM + AM

Significant softening in the weld zone,

- Depletion of principates in the microstructure in the weld zone (almost only Al matrix)
- Residual stress introduced during PBF-LB are, at least partly, neutralized by the welding heat.

Heat Treatment

Natural cooling (60s) + 140 °C (72 h)

Reduction in the hardness from 25% to 15% by PWHT

AJP Conference 2023 - Braga, Portugal

Weldability

Friction welding between conventionally and PBF-LB manufactured AI alloy tubes

GMAW welding between conventionally and PBF-LB manufactured Al alloy sheets

AJP Conference 2023 - Braga, Portugal

20/10/2023

15/20

Joining your future.

Friction Welding of PBF-LB Al Alloy Parts

GHENT

UNIVERSI

nstitute of Mechanics. Materials and

Civil Engineering (iMMC)

Joining your future.

AJP Conference 2023 - Braga, Portugal

Friction Welding of DED-Arc Al Alloy Parts

High degree of plasticization of the Conv part Extremely low plasticization of the DED-Arc part (with subsequent failure)

First theory: due to the inter-layer regions of the DED-Arc imesSecond theory: large amount of the plasticized Conv material forces into the DED-Arc part 🗙

Failure reason: Mechanical load in the FRW process is too high for the **DED-Arc** part

Usage of low process pressure

Accumulation of precipitates in the weld line (Macro) lack of bonding due to the low process pressure

20/10/2023

Joining your future.

AJP Conference 2023 - Braga, Portugal

Friction Welding of DED-Arc Al Alloy Parts

Low UTS:

Lack of bonding (low process pressure)

Joining your future.

AJP Conference 2023 - Braga, Portugal

20/10/2023

UCLouvain

Civil Engineering (iMMC)

Institute of Mechanics, Materials and

GHENT

UNIVERSIT

Conclusion and Final Remarks

Friction Welding of PBF-LB Al Alloy Parts

Solid-State Welding

Processes

(FRW)

Weldability

Friction Welding of DED-Arc Al Alloy Parts

UCLouvain

Civil Engineering (iMMC)

Joining your future.

19/20

AJP Conference 2023 - Braga, Portugal

Thank you for your attention!

MSc.-ing Rafael Nunes Project Engineer T +32 (0)9 292 14 13 rafael.nunes@bil-ibs.be

Belgisch Instituut voor Lastechniek vzw Technologiepark-Zwijnaarde 48, B-9052 Zwijnaarde (Gent) BTW BE 0406.606.875 info@bil-ibs.be www.bil-ibs.be

Joining your future.

AJP Conference 2023 - Braga, Portugal

