Post-processing: Wire and Arc Additive Manufacturing (WAAM) for steel – Gaz Metal Arc Welding (GMAW)

- 0.2 ... 0.5 mm per side for inner surfaces
 - Solid components

WAAM parameters during deposition matter:

- Low TS -> EWW is not effected
- High TS -> EWW reduces on \approx 7-8 %

Rule of thumb

- Allowance for machining: 0.7-1.8 mm per side + extra allowance to compensate deformations of the substrate plate
- Implement roughing step in 2-3 passes
- Allowance for finishing can be calculated by taking surface quality after roughing step Ra 0.8-1.5 μm

2. PWHT (Post Welded Heat Treatment)

- Stress relief to avoid:
 - Deformation
 - corrosion (i.e. stress corrosion cracking stainless steel)
 - brittle fracture (i.e. steel at low temperature)
 - Fatigue cracking (i.e. for welds in compression)
- Annealing for material homogenization (i.e. duplex)

Rule of thumb "stress relief carbon steel"

- Temperature: ±580-620°C
- Heating rate: maximum 280°C/hour
- Holding time: ±1 hour/inch (≈2,4 min/mm) with a minimum of 30 minutes and a maximum of 2 hours
- Cooling rate: maximum 220°C/hour

3. Clamping & alignment

- Be aware of: positioning and alignment accuracy is low due to:
 - Deformations
 - Significant waviness
- NO reference surfaces
- 1st step prepare reference surfaces:
 - Pre-machining
 - 3D scanning of the clamped part
 - Soft jaws
- Alignment:
 - Using 3D scanned component. Use premachined surfaces or jig for alignment
 - Manual using wavy WAAM surfaces \rightarrow bigger allowance is required to compensate the positioning and alignment errors

4. Cutting parameters

• Roughing:

- recommendation
- Finishing:

Take into account

- edge (BUE) formation

• Limit a_p up to 3mm for thin walled parts • Reduce the amount of roughing passes to the minimal \rightarrow remove the inconsistent surface area as fast as possible Cutting velocity: Middle of the manufacturer • Federate: highest value recommended by the tool

manufacturer -> big chips

• Cutting velocity: Middle of the manufacturer recommendation • Feed rate: chose the value in the lower range of recommendation by the tool manufacturer \rightarrow surface guality improves • Provide sufficient a_e value ≥ 0.3 mm \rightarrow stable chips formation

• Hardness and tensile properties of the WAAM material are higher than of the usual steel. Take it into account during selection of cutting parameters

• Cutting velocity should be high enough to avoid built up

• Dry cutting is preferable during roughing of low-carbon steel with carbide tools \rightarrow increases tool life

